Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38664864

RESUMEN

The Simple View of Reading model suggests that intact language processing and word decoding lead to proficient reading comprehension, with recent studies pointing at executive functions as an important component contributing to reading proficiency. Here, we aimed to determine the underlying mechanism(s) for these changes. Participants include 120 8- to 12-year-old children (n = 55 with dyslexia, n = 65 typical readers) trained on an executive functions-based reading program, including pre/postfunctional MRI and behavioral data collection. Across groups, improved word reading was related to stronger functional connections within executive functions and sensory networks. In children with dyslexia, faster and more accurate word reading was related to stronger functional connections within and between sensory networks. These results suggest greater synchronization of brain systems after the intervention, consistent with the "neural noise" hypothesis in children with dyslexia and support the consideration of including executive functions as part of the Simple View of Reading model.


Asunto(s)
Dislexia , Función Ejecutiva , Imagen por Resonancia Magnética , Lectura , Humanos , Niño , Dislexia/fisiopatología , Dislexia/psicología , Dislexia/diagnóstico por imagen , Función Ejecutiva/fisiología , Masculino , Femenino , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
2.
Nat Neurosci ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689142

RESUMEN

The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.

3.
Nat Neurosci ; 27(5): 1000-1013, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532024

RESUMEN

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adolescente , Masculino , Femenino , Adulto , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Atlas como Asunto , Niño , Probabilidad , Vías Nerviosas/fisiología
4.
Int J Part Ther ; 10(1): 32-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37823016

RESUMEN

Purpose: Pediatric brain tumor patients often experience significant cognitive sequelae. Resting-state functional MRI (rsfMRI) provides a measure of brain network organization, and we hypothesize that pediatric brain tumor patients treated with proton therapy will demonstrate abnormal brain network architecture related to cognitive outcome and radiation dosimetry. Participants and Methods: Pediatric brain tumor patients treated with proton therapy were enrolled on a prospective study of cognitive assessment using the NIH Toolbox Cognitive Domain. rsfMRI was obtained in participants able to complete unsedated MRI. Brain system segregation (BSS), a measure of brain network architecture, was calculated for the whole brain, the high-level cognition association systems, and the sensory-motor systems. Results: Twenty-six participants were enrolled in the study for cognitive assessment, and 18 completed rsfMRI. There were baseline cognitive deficits in attention and inhibition and processing speed prior to radiation with worsening performance over time in multiple domains. Average BSS across the whole brain was significantly decreased in participants compared with healthy controls (1.089 and 1.101, respectively; P = 0.001). Average segregation of association systems was significantly lower in participants than in controls (P < 0.001) while there was no difference in the sensory motor networks (P = 0.70). Right hippocampus dose was associated with worse attention and inhibition (P < 0.05) and decreased segregation in the dorsal attention network (P < 0.05). Conclusion: Higher mean dose to the right hippocampus correlated with worse dorsal attention network segregation and worse attention and inhibition cognitive performance. Patients demonstrated alterations in brain network organization of association systems measured with rsfMRI; however, somatosensory system segregation was no different from healthy children. Further work with preradiation rsfMRI is needed to assess the effects of surgery and presence of a tumor on brain network architecture.

5.
Brain Imaging Behav ; 17(6): 689-701, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37695507

RESUMEN

Survivors of pediatric brain tumors experience significant cognitive deficits from their diagnosis and treatment. The exact mechanisms of cognitive injury are poorly understood, and validated predictors of long-term cognitive outcome are lacking. Resting state functional magnetic resonance imaging allows for the study of the spontaneous fluctuations in bulk neural activity, providing insight into brain organization and function. Here, we evaluated cognitive performance and functional network architecture in pediatric brain tumor patients. Forty-nine patients (7-18 years old) with a primary brain tumor diagnosis underwent resting state imaging during regularly scheduled clinical visits. All patients were tested with a battery of cognitive assessments. Extant data from 139 typically developing children were used as controls. We found that obtaining high-quality imaging data during routine clinical scanning was feasible. Functional network organization was significantly altered in patients, with the largest disruptions observed in patients who received propofol sedation. Awake patients demonstrated significant decreases in association network segregation compared to controls. Interestingly, there was no difference in the segregation of sensorimotor networks. With a median follow-up of 3.1 years, patients demonstrated cognitive deficits in multiple domains of executive function. Finally, there was a weak correlation between decreased default mode network segregation and poor picture vocabulary score. Future work with longer follow-up, longitudinal analyses, and a larger cohort will provide further insight into this potential predictor.


Asunto(s)
Neoplasias Encefálicas , Trastornos del Conocimiento , Niño , Humanos , Adolescente , Imagen por Resonancia Magnética/métodos , Encéfalo , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Mapeo Encefálico/métodos , Cognición , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Red Nerviosa/diagnóstico por imagen
6.
Neuroimage ; 277: 120195, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37286152

RESUMEN

Connector 'hubs' are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual variability. To answer this question, we examined inter-individual variation at group-level hubs in both the Midnight Scan Club and Human Connectome Project datasets. The top group hubs defined based on the participation coefficient did not overlap strongly with the most prominent regions of inter-individual variation (termed 'variants' in prior work). These hubs have relatively strong similarity across participants and consistent cross-network profiles, similar to what was seen for many other areas of cortex. Consistency across participants was further improved when these hubs were allowed to shift slightly in local position. Thus, our results demonstrate that the top group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross-network bridges. More caution is warranted with alternative hub measures, such as community density (which are based on spatial proximity to network borders) and intermediate hub regions which show higher correspondence to locations of individual variability.


Asunto(s)
Conectoma , Red Nerviosa , Humanos , Vías Nerviosas , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Conectoma/métodos
7.
J Cogn Neurosci ; 35(2): 200-225, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378901

RESUMEN

Resting-state fMRI studies have revealed that individuals exhibit stable, functionally meaningful divergences in large-scale network organization. The locations with strongest deviations (called network "variants") have a characteristic spatial distribution, with qualitative evidence from prior reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries can inform us on constraints guiding the development of these idiosyncratic regions. Here, we used data from the Human Connectome Project to systematically investigate hemispheric differences in network variants. Variants were significantly larger in the right hemisphere, particularly along the frontal operculum and medial frontal cortex. Variants in the left hemisphere appeared most commonly around the TPJ. We investigated how variant asymmetries vary by functional network and how they compare with typical network distributions. For some networks, variants seemingly increase group-average network asymmetries (e.g., the group-average language network is slightly bigger in the left hemisphere and variants also appeared more frequently in that hemisphere). For other networks, variants counter the group-average network asymmetries (e.g., the default mode network is slightly bigger in the left hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and right-handers differed in their network variant asymmetries for the cingulo-opercular and frontoparietal networks, suggesting that variant asymmetries are connected to lateralized traits. These findings demonstrate that idiosyncratic aspects of brain organization differ systematically across the hemispheres. We discuss how these asymmetries in brain organization may inform us on developmental constraints of network variants and how they may relate to functions differentially linked to the two hemispheres.


Asunto(s)
Mapeo Encefálico , Conectoma , Humanos , Individualidad , Lateralidad Funcional , Encéfalo/diagnóstico por imagen , Lóbulo Frontal , Imagen por Resonancia Magnética
8.
Cereb Cortex ; 33(6): 2879-2900, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802477

RESUMEN

Completing complex tasks requires that we flexibly integrate information across brain areas. While studies have shown how functional networks are altered during different tasks, this work has generally focused on a cross-subject approach, emphasizing features that are common across people. Here we used extended sampling "precision" fMRI data to test the extent to which task states generalize across people or are individually specific. We trained classifiers to decode state using functional network data in single-person datasets across 5 diverse task states. Classifiers were then tested on either independent data from the same person or new individuals. Individualized classifiers were able to generalize to new participants. However, classification performance was significantly higher within a person, a pattern consistent across model types, people, tasks, feature subsets, and even for decoding very similar task conditions. Notably, these findings also replicated in a new independent dataset. These results suggest that individual-focused approaches can uncover robust features of brain states, including features obscured in cross-subject analyses. Individual-focused approaches have the potential to deepen our understanding of brain interactions during complex cognition.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Cognición , Imagen por Resonancia Magnética/métodos , Descanso
9.
Neuroimage ; 260: 119476, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35842100

RESUMEN

Recent work identified single time points ("events") of high regional cofluctuation in functional Magnetic Resonance Imaging (fMRI) which contain more large-scale brain network information than other, low cofluctuation time points. This suggested that events might be a discrete, temporally sparse signal which drives functional connectivity (FC) over the timeseries. However, a different, not yet explored possibility is that network information differences between time points are driven by sampling variability on a constant, static, noisy signal. Using a combination of real and simulated data, we examined the relationship between cofluctuation and network structure and asked if this relationship was unique, or if it could arise from sampling variability alone. First, we show that events are not discrete - there is a gradually increasing relationship between network structure and cofluctuation; ∼50% of samples show very strong network structure. Second, using simulations we show that this relationship is predicted from sampling variability on static FC. Finally, we show that randomly selected points can capture network structure about as well as events, largely because of their temporal spacing. Together, these results suggest that, while events exhibit particularly strong representations of static FC, there is little evidence that events are unique timepoints that drive FC structure. Instead, a parsimonious explanation for the data is that events arise from a single static, but noisy, FC structure.


Asunto(s)
Mapeo Encefálico , Encéfalo , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas
10.
Neuroimage ; 237: 118164, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000397

RESUMEN

Many recent developments surrounding the functional network organization of the human brain have focused on data that have been averaged across groups of individuals. While such group-level approaches have shed considerable light on the brain's large-scale distributed systems, they conceal individual differences in network organization, which recent work has demonstrated to be common and widespread. This individual variability produces noise in group analyses, which may average together regions that are part of different functional systems across participants, limiting interpretability. However, cost and feasibility constraints may limit the possibility for individual-level mapping within studies. Here our goal was to leverage information about individual-level brain organization to probabilistically map common functional systems and identify locations of high inter-subject consensus for use in group analyses. We probabilistically mapped 14 functional networks in multiple datasets with relatively high amounts of data. All networks show "core" (high-probability) regions, but differ from one another in the extent of their higher-variability components. These patterns replicate well across four datasets with different participants and scanning parameters. We produced a set of high-probability regions of interest (ROIs) from these probabilistic maps; these and the probabilistic maps are made publicly available, together with a tool for querying the network membership probabilities associated with any given cortical location. These quantitative estimates and public tools may allow researchers to apply information about inter-subject consensus to their own fMRI studies, improving inferences about systems and their functional specializations.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Individualidad , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Probabilidad
11.
Curr Opin Behav Sci ; 40: 19-26, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33553511

RESUMEN

Cognitive control, the ability to engage in goal-related behavior, is linked to frontal, parietal, and cingulate brain regions. However, the underlying function(s) of these regions is still in question, with ongoing discussions about their specificity and/or multifunctionality. These brain regions are also among the most variable across individuals, which may confound multi-functionality with inter-individual heterogeneity. Precision fMRI-extended data acquisition from single individuals-allows for reliable individualized mapping of brain organization. We review examples of recent studies that use precision fMRI to surmount inter-individual variability in functional neuroanatomy. These studies provide evidence of interleaved specialized and multifunctional regions in the frontal cortex. We discuss the potential for these techniques to address outstanding controversies on the neural underpinnings of cognitive control.

12.
Neuroimage ; 229: 117743, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33454409

RESUMEN

Recent work has demonstrated that individual-specific variations in functional networks (termed "network variants") can be identified in individuals using resting state functional magnetic resonance imaging (fMRI). These network variants exhibit reliability over time, suggesting that they may be trait-like markers of individual differences in brain organization. However, while networks variants are reliable at rest, is is still untested whether they are stable between task and rest states. Here, we use precision data from the Midnight Scan Club (MSC) to demonstrate that (1) task data can be used to identify network variants reliably, (2) these network variants show substantial spatial overlap with those observed in rest, although state-specific effects are present, (3) network variants assign to similar canonical functional networks in task and rest states, and (4) single tasks or a combination of multiple tasks produce similar network variants to rest. Together, these findings further reinforce the trait-like nature of network variants and demonstrate the utility of using task data to define network variants.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Descanso/fisiología , Análisis de Datos , Bases de Datos Factuales/tendencias , Humanos , Imagen por Resonancia Magnética/tendencias
13.
Mol Autism ; 11(1): 82, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081838

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is characterized by high population-level heritability and a three-to-one male-to-female ratio that occurs independent of sex linkage. Prior research in a mixed-sex pediatric sample identified neural signatures of familial risk elicited by passive viewing of point light motion displays, suggesting the possibility that both resilience and risk of autism might be associated with brain responses to biological motion. To confirm a relationship between these signatures and inherited risk of autism, we tested them in families enriched for genetic loading through undiagnosed ("carrier") females. METHODS: Using functional magnetic resonance imaging, we examined brain responses to passive viewing of point light displays-depicting biological versus non-biological motion-in a sample of undiagnosed adult females enriched for inherited susceptibility to ASD on the basis of affectation in their respective family pedigrees. Brain responses in carrier females were compared to responses in age-, SRS-, and IQ-matched non-carrier-females-i.e., females unrelated to individuals with ASD. We conducted a hypothesis-driven analysis focused on previously published regions of interest as well as exploratory, brain-wide analyses designed to characterize more fully the rich responses to this paradigm. RESULTS: We observed robust responses to biological motion. Notwithstanding, the 12 regions implicated by prior research did not exhibit the hypothesized interaction between group (carriers vs. controls) and point light displays (biological vs. non-biological motion). Exploratory, brain-wide analyses identified this interaction in three novel regions. Post hoc analyses additionally revealed significant variations in the time course of brain activation in 20 regions spanning occipital and temporal cortex, indicating group differences in response to point light displays (irrespective of the nature of motion) for exploration in future studies. LIMITATIONS: We were unable to successfully eye-track all participants, which prevented us from being able to control for potential differences in eye gaze position. CONCLUSIONS: These methods confirmed pronounced neural signatures that differentiate brain responses to biological and scrambled motion. Our sample of undiagnosed females enriched for family genetic loading enabled discovery of numerous contrasts between carriers and non-carriers of risk of ASD that may index variations in visual attention and motion processing related to genetic susceptibility and inform our understanding of mechanisms incurred by inherited liability for ASD.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Encéfalo/fisiopatología , Predisposición Genética a la Enfermedad , Adulto , Trastorno Autístico/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Femenino , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
14.
Neuroimage ; 217: 116866, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32325210

RESUMEN

Denoising fMRI data requires assessment of frame-to-frame head motion and removal of the biases motion introduces. This is usually done through analysis of the parameters calculated during retrospective head motion correction (i.e., 'motion' parameters). However, it is increasingly recognized that respiration introduces factitious head motion via perturbations of the main (B0) field. This effect appears as higher-frequency fluctuations in the motion parameters (>0.1 â€‹Hz, here referred to as 'HF-motion'), primarily in the phase-encoding direction. This periodicity can sometimes be obscured in standard single-band fMRI (TR 2.0-2.5 â€‹s) due to aliasing. Here we examined (1) how prevalent HF-motion effects are in seven single-band datasets with TR from 2.0 to 2.5 â€‹s and (2) how HF-motion affects functional connectivity. We demonstrate that HF-motion is more common in older adults, those with higher body mass index, and those with lower cardiorespiratory fitness. We propose a low-pass filtering approach to remove the contamination of high frequency effects from motion summary measures, such as framewise displacement (FD). We demonstrate that in most datasets this filtering approach saves a substantial amount of data from FD-based frame censoring, while at the same time reducing motion biases in functional connectivity measures. These findings suggest that filtering motion parameters is an effective way to improve the fidelity of head motion estimates, even in single band datasets. Particularly large data savings may accrue in datasets acquired in older and less fit participants.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Vías Nerviosas/diagnóstico por imagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Índice de Masa Corporal , Mapeo Encefálico , Niño , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Oxígeno/sangre , Aptitud Física , Estudios Retrospectivos , Adulto Joven
15.
Proc Natl Acad Sci U S A ; 116(45): 22851-22861, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31611415

RESUMEN

Resting-state functional magnetic resonance imaging (fMRI) has provided converging descriptions of group-level functional brain organization. Recent work has revealed that functional networks identified in individuals contain local features that differ from the group-level description. We define these features as network variants. Building on these studies, we ask whether distributions of network variants reflect stable, trait-like differences in brain organization. Across several datasets of highly-sampled individuals we show that 1) variants are highly stable within individuals, 2) variants are found in characteristic locations and associate with characteristic functional networks across large groups, 3) task-evoked signals in variants demonstrate a link to functional variation, and 4) individuals cluster into subgroups on the basis of variant characteristics that are related to differences in behavior. These results suggest that distributions of network variants may reflect stable, trait-like, functionally relevant individual differences in functional brain organization.


Asunto(s)
Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...